H2OGLRMMetrics Class¶
The class provides all metrics available for H2OGLRM.
Getter Methods
- getCatCnt()
Returns: Number of Non-Missing Categorical Values.
Scala type:
Long, Python type:int, R type:integer- getCatErr()
Returns: Misclassification Error (Categorical Cols).
Scala type:
Double, Python type:float, R type:numeric- getCustomMetricName()
Returns: Name of custom metric.
Scala type:
String, Python type:string, R type:character- getCustomMetricValue()
Returns: Value of custom metric.
Scala type:
Double, Python type:float, R type:numeric- getDataFrameSerializer()
Returns: A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.
Scala type:
String, Python type:string, R type:character- getDescription()
Returns: Optional description for this scoring run (to note out-of-bag, sampled data, etc.).
Scala type:
String, Python type:string, R type:character- getMSE()
Returns: The Mean Squared Error of the prediction for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getNobs()
Returns: Number of observations.
Scala type:
Long, Python type:int, R type:integer- getNumCnt()
Returns: Number of Non-Missing Numeric Values.
Scala type:
Long, Python type:int, R type:integer- getNumErr()
Returns: Sum of Squared Error (Numeric Cols).
Scala type:
Double, Python type:float, R type:numeric- getRMSE()
Returns: The Root Mean Squared Error of the prediction for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getScoringTime()
Returns: The time in mS since the epoch for the start of this scoring run.
Scala type:
Long, Python type:int, R type:integer