Dataset Column Details¶
First, we'll initialize a client with our server credentials and store it in the variable dai.
In [1]:
Copied!
import driverlessai
dai = driverlessai.Client(address='http://mr-dl26:12345', username='py', password='py')
import driverlessai
dai = driverlessai.Client(address='http://mr-dl26:12345', username='py', password='py')
In [5]:
Copied!
dai.datasets.list()
dai.datasets.list()
Out[5]:
| Type | Key | Name ----+---------+--------------------------------------+-------------- 0 | Dataset | 20bc1880-efb7-11eb-82af-0242c0a8fe02 | iris.csv.zip
In [7]:
Copied!
dataset = dai.datasets.list()[0]
dataset = dai.datasets.get("20bc1880-efb7-11eb-82af-0242c0a8fe02")
dataset = dai.datasets.list()[0]
dataset = dai.datasets.get("20bc1880-efb7-11eb-82af-0242c0a8fe02")
In [9]:
Copied!
dataset.column_summaries()
dataset.column_summaries()
Out[9]:
<<C1 Summary>, <C2 Summary>, <C3 Summary>, <C4 Summary>, <C5 Summary>>
In [18]:
Copied!
C1_summary = dataset.column_summaries()["C1"]
C1_summary = dataset.column_summaries()["C1"]
In [19]:
Copied!
print(C1_summary)
print(C1_summary)
--- C1 ---
4.3|███████
|█████████████████
|██████████
|████████████████████
|████████████
|███████████████████
|█████████████
|████
|████
7.9|████
Data Type: real
Logical Types: []
Datetime Format:
Count: 150
Missing: 0
Mean: 5.84
SD: 0.828
Min: 4.3
Max: 7.9
Unique: 35
Freq: 10
In [20]:
Copied!
C5_summary.sd
C5_summary.sd
Out[20]:
0.8280661279778637